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LETI’ER TO THE EDITOR 

Analysis of the Migdal-Kadanoff renormalisation group 
approach to the dilute s-state Potts model. An alternative 
scheme for the percolation (s --* 1) limit 
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$ Center for Polymer Studies11 and Department of Physics, Boston University, Boston, 
Massachusetts 02215, USA 
$ Department of Physics, Virginia Polytechnic Institute and State University Blacksbury, 
Virginia 24061, USA 

Received 28 April 1982 

Abstract. In the dilute s-state Potts formulation of the site-bond correlated percolation, 
two current treatments of the single-site interaction in the Migdal-Kadanoff renormalisa- 
tion group are analysed. It is pointed out that they respect the Ising symmetry and would 
lead always to a critical site percolation probability p s c a $ ,  giving a phase diagram 
qualitatively wrong for dimensions d > 2. It is found that the origin of this defect is traced 
to the preservation of the king symmetry which is absent in the percolation problem. An 
alternative scheme is proposed which gives the correct behaviour. 

In random bond percolation (for reviews see Stauffer 1979, 1981b and Essam 1980) 
each bond between two neighbouring sites is active with random probability pB. In 
site percolation each site is occupied with random probability p s .  In random site-bond 
percolation (see e.g. Hoshen et al 1979, Agrawal et a1 1979, Nakanishi and Reynolds 
1979) bonds may only be active between occupied sites. If the sites are not randomly 
occupied but correlated as sites in a lattice gas model and the bonds are randomly 
active between occupied sites, we have the site-bond correlated percolation (Coniglio 
et a1 1979, 1982). 

This was originally introduced as a model for reversible gelation, but subsequently 
it also provided a useful scheme to describe critical ‘droplets’ near the lattice gas 
critical points (Coniglio and Klein 1980). This model has also been investigated by 
E expansion (Coniglio and Lubensky 1980) and Monte Carlo methods (Stauffer 
1981a, Ottavi 1981, Roussenq 1981, Hermann and Stauffer 1981). 

It has been shown (Murata 1979, Coniglio and Klein 1980) that the site-bond 
correlated percolation can be obtained from the dilute s-state Potts Hamiltonian X 
in the limit s -* 1. The form of this Hamiltonian is 

where every site is associated with a Potts variable ai = 1,2,  . . . , s and with a lattice 
gas variable ni = 0, 1. K is the lattice gas nearest-neighbour interaction, A is the 
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chemical potential of the occupied sites and J is related to the bond probability pB 
between two occupied sites via the relation pB = 1 - e-J. 

Hamiltonian (1) has been investigated for other reasons by various authors for 
any s. In particular, vacancies play an effective role in displaying the first-order phase 
transition exhibited by the Potts model for higher values of s (Nienhuis et a1 1979, 
1981, 1980a, b, Berker et a1 1980, Andelman and Berker 1981, Nauenberg and 
Scalapino 1980). 

In most cases the approximations involved are particularly troublesome in the 
limit s -P 1. We will briefly analyse in particular the approximations involved in the 
Migdal-Kadanoff renormalisation group approach (MKRG) (Migdal 1976, Kadanoff 
1976). 

In applying the MKRG to a problem, there are two general steps: (1) ‘bond’ qoving 
and (2) decimation. Symbolically we may represent these two steps as H + H + H ’  
(see figure 1). Since the approximation lies in the first step, whether one gets a 
reasonable result from MKRG depends crucially on the choice of which ‘bonds’ to 
move (Migdal 1976, Kadanoff 1976, Emery and Swendsen 1977, Swendsen and Zia 
1979). Especially when single-site interactions are involved, their effects on the 
undecimated (renormalised) variables can be grossly underestimated if they or a 
portion thereof are not moved. The choice of what portion to move is, at this level 
of approximation, not unique and must be guided by physical arguments. 

(01 l b )  IC1 

Figure 1. Successive steps of the Migdal-Kadanoff renormalisation group on the square 
lattice: (i) bond moving ( U ) +  ( b ) ;  (ii) decimation (b )+  (c). 

We briefly describe two current procedures. One is based on a suggestion due to 
Emery and Swendsen (1977) in which the effect of the bond moving approximation 
vanishes in the weak and strong limits. This is accomplished by writing Hamiltonian 
(1) in the following way: 

where c is the coordination number. Only the first two terms are subject to the bond 
moving. This procedure (Berker et a1 1980, Andelman and Berker 1981) leads for 
s = 1 to two lines of fixed points instead of two expected fixed points (Andelman and 
Berker 1981). 

A second procedure is based on the idea that in the strong coupling limit the 
density of sites must be conserved in the bond moving approximation (see e.g. Berker 
et a1 1978, Coniglio and Klein 1980). This is accomplished by writing the single-site 
interaction in Hamiltonian (1) as a bond using the identity 
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Moving these ‘bonds’ leads to (i) an invariant line H = $(A -cK/2) = 0, which in the 
king terminology corresponds to the magnetic field H = 0, and (ii) two other stable 
lines at A = -CO (all sites occupied) and A = +CO (all sites empty). As a.consequence, 
starting from any value of pB and H>O and applying the RG, one will always reach 
the point A = +CO, where there is no percolation (all sites empty). Therefore for any 
given value of pB and K the corresponding site critical probability psc will be always 
greater than or equal to 3. This may not be a serious problem for planar lattices for 
which psc 3 3. But it gives wrong results for three-dimensional lattices for which psc < 3. 
In fact, Coniglio and Klein (1980), using the second procedure of bond moving, found 
for two-dimensional systems and pB = 1 in the ps-K plane a percolation line which is 
always above the line p s = $ .  More precisely, this line starts at the random site 
percolation threshold and monotonically ends at the lattice gas critical point K = K,, 
p s = f ,  in agreement with rigorous (Coniglio et a1 1977) and Monte Carlo results 
(Stauffer 1981a, b, Roussenq 1981). 

If one did use the same procedure for three-dimensional lattices, one would find 
the same qualitative behaviour, namely a line of percolation points in the plane p s  > 3 
ending at the lattice critical point, contrary to the well established result (Muller- 
Krumbhaar 1974, Domb et a1 1980, Hermann and Stauffer 1981) in which the 
percolative lines are always in the plane p s  C f and end on the coexistence curve at a 
value Kp > K,. 

In order to overcome these problems we suggest an alternative scheme for moving 
the single-site interaction. For simplicity we restrict ourselves to the case K = 0 
(random site-bond percolation). First consider J, the parameter in H associated with 
bond probability pB = 1 - q B  = 1 -e-’. Within the MKRG, in the first step of bond 
moving, we have 

j = bd-’ J. (4) 

In terms of the physical pB, this step corresponds to setting pB = 0 (J = 0) on all bonds 
which have been moved and to balancing this loss in connectivity by increasing pB to cB = 1 - exp(-j) on the remaining bonds (figure 1). Thus from (4) 

P B  = 1 -exp(-bd-lJ) or GB = 1 -p’B = ( q b ) b d - ’ .  ( 5 )  

Next we consider A, the parameter in 3t’ related to site probability p s  = 1 -qs by 

p s  = 1/(1 +e*). (6) 

Motivated by the discussion associated with pB, we choose to move a portion of A 
such that 

(7) 4 s  = 1-6s = ( q S ) b d - - l ,  

treating the site and bond probability on the same footing. In this way, the disconnec- 
tion of those sites, induced by the bond moving step (shown as crosses in figure l(b)), 
is balanced by increasing the site probability on the remaining sites (shown as dots in 
figure l(6)). In order to achieve (7) in the bond moving, we write the single-site 
interaction in Hamiltonian (1) as 

-A C ni = -(A + D )  ni + ( D / c )  (ni + nj). (8) 
i i (ii) 
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The D/c term is that portion of A which we associate with a bond and is moved along 
withJ. Thus 

= bd-'D, (9) 
The two standard procedures discussed above are recovered respectively by choosing 
D = 0 and D = -A. Here we choose D such that (7) is satisfied, namely 

e-D = 4s = (1 + e-A)-'. (10) 
With this choice the decimation step l?+H',  for a simple hypercubic lattice in d 
dimensions with coordination number c = 2d, leads to the following recursion relations 
(for s = 1) 

(11) exp(A') = exp[A - ( A  - 1)D] 

and 

(12) 
where A =bd-' and from (10) eD = 1 +e-A. 

The analysis of these recursion relations, in the infinitesimal limit b + 1, gives one 
fixed point at A = --CO with exp(-J*) = f for d = 2 and exp(-J*) = 0.84 for d = 3 with 
one relevant eigenvalue y = 0.61 for d = 2 and y = 0.82 for d = 3, confirming that 
random site-bond percolation is described by only one universality class. The phase 
diagram in the plane p B ,  ps  is given in figure 2 for d = 2 and d = 3, in qualitative 
agreement with more accurate numerical results (see e.g. Agrawal etall979, Hermann 
and Stauffer 1981). We note that for d = 3  we find the desired feature psc<$ for 
large enough values of pB. 

In conclusion, we have shown that in order to study site-bond percolation using 
the MKRG applied to the dilute s-state Potts model in the limit s + 1, one has to treat 
the single-site interaction in a way that differs from the usual procedures, so that the 
physics underlying this problem is respected. The effect of this treatment in the general 
case of K # 0 (site-bond correlated percolation) and s # 1 (the dilute s-state Potts 
model) is under investigation. 

-AI b 1 -exp(-J') = (1 -e ) (1 -exp[A-(A/d - l)D]'-b}, 
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Figure 2. Phase diagram for random site percolation for (a) d = 2 and ( b )  d = 3. 
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